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Abstract

In the field of deep video action recognition, approaches that leverage multi-modal
information of the dataset, e.g., RGB, optical flow and pose estimate, have shown
great success in recent years due to their ability to combine spatial and temporal
information for more effective action recognition. However, while the performance of
these approaches highly depend on the fusion scheme of the multi-modal streams,
previous works have achieved this by simple methods in which the multi-modal
information is fused at the final stage of the architecture, or by manually designing
the fusion scheme of the streams at different layers.

In this thesis, we propose a novel approach, which we dub AutoDeepFuse, to the
fusion of multi-modal streams via a 3D spatio-temporal CNN architecture. Moreover,
instead of manually designing the architecture, we utilize PC-DARTS, a differentiable
architecture search method, to automatically discover an optimal fusion network.
Through our experiments, we show that our method is able to discover fusion networks
that are compact in size and perform superior to the baseline fusion scheme that
concatenates the modality stream at the final stage of the network. Furthermore,
we contribute to a better understanding of PC-DARTS by studying the effect of
various design considerations of PC-DARTS on the quality of the networks that it
discovers. Through the analysis of the experimental results, we show that the search
space design of PC-DARTS has a significant impact on the resulting performance
of the found network, and accordingly, we provide suggestions on constructing an
effective search space of PC-DARTS.
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1 Introduction

Video action recognition, the task of understanding human actions in video, is a
crucial research area in the field of computer vision with various real-world applica-
tions, including motion analysis, human-computer interaction, healthcare monitoring,
security and gaming [Bloom, 2015, Antoshchuk et al., 2018, Ben Youssef et al., 2016,
Gul et al., 2020]. With the recent success of convolutional neural networks (CNN)
in image recognition, there has been a growing interest in the research community
in applying well-performing CNN architectures to the task of video action recog-
nition [Karpathy et al., 2014, Tran et al., 2015, Simonyan and Zisserman, 2014].
However, successfully classifying human actions has long been a challenging task.
Contrary to object recognition in images, action recognition requires understanding
of both the appearance and motion information from the 3D data whose volume is
significantly larger than that of images. Further, the temporal nature of the data
poses an additional difficulty of modelling long-range interactions between the frames.
Hence, an action recognition algorithm must be able to take full advantage of the
multi-modal information in the data in order to effectively recognize actions.

In the recent years, approaches incorporating multiple modalities of the data have
been a popular option for addressing this issue. These approaches made use of
various modalities of the data in which different aspects of the information are more
explicitly captured. Simonyan and Zisserman [2014] pioneered in the development
of this approach, where they used two separate CNNs for extracting the spatial
(appearance) and temporal (motion) information from the RGB and optical flow of
the data. Inspired by the success of their method, subsequent researches focused on
extending the multi-stream methods to utilize other input modalities such as human
pose estimate [Zolfaghari et al., 2017, Azar et al., 2018] and depth image [Roitberg
et al., 2019].

In adopting multi-stream approach, a crucial aspect to consider is how to fuse the
information extracted from each modality. Previous works that use multi-stream
networks typically combined the extracted information at the very last stage by
simply averaging the class scores of each stream output [Azar et al., 2018, Simonyan
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and Zisserman, 2014, Yue-Hei Ng et al., 2015], or training a simple classifier such
as an SVM [Simonyan and Zisserman, 2014]. However, these fusion methods are
suboptimal, since the spatial and temporal information of the data at the pixel-
level is not communicated between the streams, and therefore the networks are not
able to recognize "what" is moving "where". To tackle this problem, later works
experimented with more complex fusion methods by manually designing fusion scheme
of the streams at different layers [Feichtenhofer et al., 2016, Park et al., 2016], or via
a Markov chain [Zolfaghari et al., 2017]. The performance improvement brought by
these methods indicate that effective fusion of data modalities is a crucial factor in
building a multi-stream video action recognition architecture.

In this thesis, we propose a novel approach, which we dub AutoDeepFuse, to
the fusion of multi-modal streams via a 3D spatio-temporal convolutional fusion
architecture. Specifically, our approach uses a three-stream architecture, in which each
stream extracts features of the RGB, optical flow and pose estimate of the data using
pre-trained models and fuse the features via a 3D CNN. Through our experiments, we
show that using a CNN to fuse the streams yields superior performance in comparison
to the simple feature concatenation at the last stage of the architecture.

Further, instead of manually designing the fusion scheme, we propose to utilize PC-
DARTS [Xu et al., 2019], a variant of differentiable architecture search (DARTS) [Liu
et al., 2018b], to automatically discover an optimal network for multi-stream fusion.
PC-DARTS is a gradient-based architecture search method that has been shown
capable of finding network architectures that outperform architectures manually
designed by human experts in various problem domains. Moreover, because PC-
DARTS searches for an optimal architecture using gradient descent, it is very fast.
In our work, we show that PC-DARTS is able to discover good fusion architectures
in only 2 GPU days, thereby avoiding the cumbersome trial-and-error process of
manually designing the multi-stream fusion scheme.

Our work also contributes to the DARTS research in several aspects. First, we
adopt DARTS, which has been so far mostly applied to the task of image classification,
to the more challenging task of video understanding, and show that DARTS is able
to handle video data.

Further, we contribute to a better understanding of DARTS by studying the effect
of various settings of DARTS on the quality of the architectures that it discovers.
While numerous researches report DARTS to be successful, several other works also
report that it does not perform well [Yu et al., 2019, Li and Talwalkar, 2020], the
possible reasons for which have been investigated in follow-up works [Zela et al., 2019,
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Chen et al., 2020]. There are two main drawback of DARTS: first, the architecture
search is performed by training an over-parametrized super-network, but the optimal
architecture is obtained by pruning the connections in the super-network to derive a
sub-network. This discretization step introduces a discrepancy between the super-
network and the sub-network, also known as the optimization gap, that may lead
to performance deterioration. Second, while DARTS performs a micro-search, i.e.,
searching only for parts of a larger fixed network, on a small pre-defined search space,
there are various macro-level search space designs that are to be manually determined
by the implementer. Thus, when it is poorly designed, the search may result in a
suboptimal architecture. In order to investigate these issues, we conduct a set of
systematic experiments on various architecture search settings of PC-DARTS and
provide valuable insights into the effects of each design considerations.
To summarize, the contributions of our work are as follows:

• We propose a novel approach to the fusion of multi-stream networks for the
task of video action recognition, in which we make use of a 3D spatio-temporal
convolutional fusion network.

• We employ differentiable architecture search to automatically find an optimal
fusion network. We show that the architecture search is fast and efficient, and
that the found network yields satisfying performance and is compact in size.

• We study and analyze the effects of various macro-level architectural designs
on the performance and model size of the architecture found by PC-DARTS.

The structure of this thesis is designed as follows: first, we start with Chapter 2,
where we describe the previous related works that motivated our research. Next, in
Chapter 3, we elucidate the DARTS and PC-DARTS frameworks which form the
basis of our architecture search method. Afterwards, we describe the components of
the AutoDeepFuse pipeline, details of the fusion architecture search and evaluation
procedure, and the architectural settings of PC-DARTS, that are experimented in
this work, in Chapter 4. In Chapter 5, we explain the experimental procedure, and
report and analyze the obtained results in detail. Lastly, we summarize and conclude
our work in Chapter 6.
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2 Related Work

2.1 Neural Architecture Search

Deep neural networks have achieved tremendous success on various problem domains
in recent years [Collobert et al., 2011, Krizhevsky et al., 2012, He et al., 2016];
however, since the optimal architectural design for a specific task or dataset often
differs significantly from another, this achievements have largely been the result of
time-consuming trial-and-error process of manually adjusting the architecture and
its hyperparameters by domain experts. To avoid this nuisance, Neural Architecture
Search (NAS) [Elsken et al., 2018], the process of automatically designing well-
performing neural network architectures, has recently gained interest in the deep
learning community. NAS is capable of producing architectures superior to manually
designed state-of-the-art architectures on domains such as image classification and
language modelling [Zoph and Le, 2016, Real et al., 2017], and architectures on par
with handcrafted architectures but with significantly less number of parameters [Liu
et al., 2018b].

2.1.1 RL & EA

A variety of NAS strategies have been studied over the last years. Zoph and Le
[2016] used reinforcement learning to train a recurrent neural network that produces
well-performing convolutional and recurrent architectures for image classification
and language modelling. Evolutionary strategies, the concept of evolving a pool of
candidate architectures by letting the fittest survive and mutate over time, have also
shown great success in image classification [Real et al., 2017].

2.1.2 Bayesian Optimization

Bayesian optimization (BO) in the context of NAS can be viewed as an iterative
search strategy where the most promising candidate architecture configuration at a
certain time step is selected based on the current objective function and evaluated
to update the objective function for the next step [Shahriari et al., 2015]. Liu et al.
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[2018a] used such strategy for the architecture search, using a surrogate model for
fast performance prediction of a given configuration. Kandasamy et al. [2018] and
Ru et al. [2020] employed a Gaussian-process-based BO architecture search combined
with Weisfeiler-Lehman kernel and OTMANN metric, respectively. Zela et al. [2018]
combined BO with Hyperband [Li et al., 2017] for the joint optimization of the
architecture and its hyperparameters by efficiently allocating resources for evaluating
configurations based on their expected performance.

2.1.3 One-Shot Approaches

While producing competitive results, the above methods suffer from extremely high
computational cost, since they require (complete or partial) evaluation of potentially
thousands of architectures which typically demands up to hundreds of GPU days. To
alleviate this drawback, a recent line of researches focused on one-shot architecture
search [Liu et al., 2018b, Pham et al., 2018, Brock et al., 2017], a search method in
which a large over-parametrized meta-architecture that contains all possible instances
of the search space is trained once to obtain the best architecture instead of train-
ing each instance separately. These methods have shown to be capable successful
architectures with the search cost reduced by several orders of magnitude.

One particularly popular one-shot NAS method is differentiable architecture search
(DARTS) [Liu et al., 2018b]. DARTS is a NAS framework in which the discrete search
space is relaxed by assigining continuous architecture parameters to the discrete
candidate operators in the meta-architecture, and the architecture parameters and
model parameters are jointly optimized via gradient descent, achieving competitive
performance while significantly reducing the search cost down to a few GPU days on
image classification and language modelling. Inspired by the success of DARTS, several
follow-up works have been conducted. GDAS [Dong and Yang, 2019] introduced
a trainable sub-graph sampler to guide the search and improve search stability.
Progressive DARTS [Chen et al., 2020] studied the phenomenon of optimization gap
that occur at the discretization step of DARTS and ways to relieve it. PC-DARTS [Xu
et al., 2019] reduced the memory cost of DARTS by sampling a subset of channels in
the search. Our work is based on DARTS and PC-DARTS, and the details of both
frameworks are elaborated in chapter 3.

6



2.2 Video Action Recognition

2.2.1 2D Frame Fusion

Inspired by the success of deep CNNs on visual data processing, previous works
focused on extending 2D convolutional networks to additionally account for the
temporal information. Based on the assumption that good representations of both
spatial (appearance) and temporal (motion) features are pivotal for effective video
action recognition, earlier works attempted to achieve it by first extracting spatial
features from each frame and fuse them to learn temporal information. Karpathy
et al. [2014] experimented with several frame fusing schemes, i.e., early, late and slow
fusions. However, their results showed that these approaches performed significantly
worse than existing models using handcrafted features, and that their approaches
only slightly outperformed the single-frame baseline architecture that simply averages
the predictions of each frame, thus concluding that the proposed architectures learn
spatial features but do not adequately capture motion information.

Subsequent works have attempted to address this issue in various ways. Donahue
et al. [2015] adopted a two-stage architecture where spatial features of individual
frames are extracted first using 2D convolutions and then passed into LSTM [Hochre-
iter and Schmidhuber, 1997], a recurrent sequence learning module, for final prediction.
Similarly, Sun et al. [2015] introduced Factorized spatio-temporal Convolutional

Netowrk (FstCN), in which inputs are passed to 2D convolutional layers at earlier
stages and then passed to two separate branches of further 2D spatial convolutions
and 1D temporal convolutions, respectively, the outputs of which are combined at
the end.

2.2.2 3D Spatio-Temporal Networks

Later works attempted to jointly learn spatio-temporal features from the data by
using 3D convolutional operators. Tran et al. [2015] experimented with such 3D
convolutional networks (C3D) and concluded that networks with small 3 x 3 x 3
(XYT) kernels perform well on action recognition tasks. Extending successful image
classification architectures with 3D kernels has also been popular. Carreira and Zisser-
man [2017] and Hara et al. [2017] have respectively extended InceptionNet [Szegedy
et al., 2015] and ResNet [He et al., 2016] by inflating 2D kernels to 3D. Further, Tran
et al. [2018] proposed R(2+1)D, which uses the ResNet structure but replaces 2D
convolution with a special type of 3D convolution that is factorized into 2D spatial
convolution and 1D temporal convolution.
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2.2.3 Multi-Stream Networks

Strategies involving multiple networks streams, in which each stream processes
multiple input modalities of the data, have also been studied. Instead of capturing
motion information from the RGB images alone, these approaches decomposed
spatial and temporal components at the data-level by additionally using optical
flow information. Simonyan and Zisserman [2014] experimented with a two-stream
convolutional network architecture that extracts spatial and temporal features from
raw RGB data and multi-frame optical flow, respectively, and combines the predictions
of the two streams by averaging or training an SVM.

Multi-stream networks using different input modalities other than optical flow have
also been explored. Azar et al. [2018] trained a four-stream network on different
modalities: RGB, human pose estimation, optical flow and warped optical flow that
removes camera motion, for group activity recognition tasks. Pose estimation has
shown to enhance activity recognition, as it contains both spatial (i.e., location of
body parts) and temporal (i.e., movement of body parts across frames) information
that helps the model discriminate between actions. For recognition tasks such as
video-based hand gesture recognition, where appearance information arguably plays
a heavier role than motion information, depth images on top of RGB images have
been used [Roitberg et al., 2019]

2.2.4 Multi-Stream Fusion

While previous works have shown that multi-stream architectures are able to signifi-
cantly improve the recognition performance, these architectures typically either fused
the class scores of each stream or fused the final feature maps from each stream via
addition or concatenation at the last stage of the architecture, limiting the network’s
capability to learn joint spatio-temporal information at intermediate layers. Thus,
the architectures were not able to effectively learn actions that occur at a specific
pixel and time, which may be crucial in discriminating between similar actions (e.g.,
brushing hair and teeth).

To address this issue, several follow-up works experimented with more complex
fusion schemes and showed that effective stream fusion is necessary for further
improvement in performance. Roitberg et al. [2019] used cross-stitch units that
enables information flow between the streams at every layer. Feichtenhofer et al.
[2016] considered various ways to fuse the features, including addition, concatenation
and 1x1 convolution, of the multi-streams networks to at different layers such that
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channel responses at the same pixel position are put in correspondence. Later,
they experimented with gating units to learn where the networks should fuse the
information across the streams [Feichtenhofer et al., 2017].

2.3 NAS on video action recognition

Given the promising results of NAS in the area of image classification, as well as
competitive performance of manually designed architectures for video understanding,
the next logical step would be to combine the two fields. However, little attempts
have been made so far to apply NAS on video action recognition tasks due to the
challenge of building efficient operations for capturing spatio-temporal information as
well as larger computational cost. Currently existing approaches are described below.

Piergiovanni et al. [2019] developed an evolutionary algorithm in which a pool of
networks consisting of a fixed number of blocks are evolved over time. Each block in a
network is initialized to be an operation or a module consisting of multiple operations
combined in an InceptionNet-like manner and has a residual connection to the next
block. The number, type and connectivity of the operators inside the blocks are then
optimized via mutation and evolution.

Similarly, Ryoo et al. [2019] proposed an evolutionary strategy that finds the
optimal multi-stream architecture that receives RGB frames and optical flow images
at different temporal resolutions as inputs. The network consists of four layers, each
containing multiple parallel blocks (i.e., sub-networks consisting of 2D and (2+1)D
convolutions). A block in the network may receive outputs from any other blocks
from the previous layers, and likewise, provides its output to any other blocks of the
later layers. The connectivity as well as the channel size and the temporal resolution
(controlled with dilated 1D convolution) of each block is learned via evolution.

Another work which is closely related to ours is by Peng et al. [2019]. The authors
employ DARTS to search for the best-performing modules for video action recognition,
using RGB frames as the input. This approach has yielded performance superior to
the manually designed architectures, while significantly reducing the computational
cost compared to the evolutionary strategies.

Our work also utilizes differentiable architecture search to discover optimal action
recognition architecture; however, our approach differs from that of Peng et al. [2019]
in that 1) instead of searching for a classification network that takes only RGB frames
as the input, we search for a fusion network that takes multiple modalities of the
data, i.e., RGB, optical flow and pose estimate, for the action recognition, and that
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2) we use the features of the modalities extracted from pre-trained models for the
architecture search, instead of directly providing the modalities as the input, to
improve the performance.
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3 Background

In this chapter, we describe DARTS [Liu et al., 2018b] and its extension, Partially-
Connected DARTS (PC-DARTS) [Xu et al., 2019], and define notations used through-
out this thesis.

3.1 DARTS

The core idea of DARTS is to continuously relax the discrete architecture search
space of operators and connectivity patterns of layers by introducing continuous
architectural parameters that represent the strength of each connection and operation,
enabling efficient end-to-end architecture search via gradient descent. The DARTS
procedure consists of two phases: the search phase, in which the optimal architecture
is searched, and the evaluation phase, where the found architecture is trained from
scratch and evaluated. The details of each phase are elaborated below.

3.1.1 Architecture Search

DARTS decomposes the network architecture into repeating blocks of sub-networks,
also known as cells. A cell is a directed acyclic graph (DAG) consisting of a sequence
of input nodes, N hidden nodes, and an output node, where every hidden node is
connected to all of its predecessor nodes. Each node x(i) is a latent representation,
and each edge (i, j) is associated with a pre-defined set O of candidate operations o(i,j)

that transforms x(i). A candidate operator may have parameters w (e.g., convolution),
or be parameter-less (e.g., skip-connection and zero, representing lack of connection).
For each hidden node x(j), its value is computed as follows:

x(j) =
∑
i<j

o(i,j)(x(i)), (1)

where 0 ≤ i < j ≤ N and x(i) are the predecessor nodes of x(j). The output of a cell is
computed by taking the summation of all values of the hidden nodes. Instead of using
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discrete operations, DARTS continuously relaxes the search space by formulating
o(i,j) as a weighted sum of all candidate operations:

ō(i,j)(x) =
∑
o∈O

exp(α
(i,j)
o )∑

o′∈O exp(α
(i,j)
o′ )

o(x), (2)

where α(i,j)
o is the architectural parameter that determines the strength of operation

o associated with the edge (i, j). In other words, each edge is associated with a mixed
operation that takes the weighted sum of the outputs of each operation. With this
formulation, gradients can be propagated through α, allowing the architecture to be
optimized in a fully differentiable manner.

The continuous relaxation thus transforms the search problem as the task of learning
optimal architectural parameters α∗ for determining the best operator for each edge.
The goal of DARTS is therefore to find α∗ that minimizes the validation loss Lval of
the given dataset:

min
α

Lval(w
∗(α), α), (3)

where w∗(a) denotes the optimal network parameters with respect to the training
dataset under the given α. Because Lval depends both on α and w, this formulation
gives rise to a bi-level optimization problem, in which the network parameters need
to be optimized repeatedly for every update step of the architecture parameters. The
naive approach, in which the network parameters are trained until convergence at
each step, would be intractable. Instead, the authors propose to approximate w∗(a)

with only one gradient update step:

∇αLval(w∗(α), α)

≈ ∇αLval(w − ξ∇wLtrain(w,α), α)

= ∇αLval(w′, α)− ξ∇2
α,wLtrain(w,α)∇w′Lval(w

′, α),

(4)

where w and ξ denote the current network parameter value and the learning rate,
respectively, and w′ = w − ξ∇wLtrain(w,α). While the convergence guarantees of
DARTS using this one-step approximation is yet to be proven, the authors empiri-
cally demonstrate it converges to a stable point with an adequate value of ξ. The
approximation can be viewed as a trade-off between the computational cost and
performance. Moreover, the cost can be further reduced by omitting the expensive
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computation of the second-order gradient, i.e., setting ξ = 0, at the cost of tolerable
amount of loss in accuracy. The resulting first-order approximation ∇αLval(w,α) can
be viewed as assuming that the current network parameter w is equal to w∗(α) at
every architecture parameter update step.

3.1.2 Evaluating the found Architecture

After the search phase, the final cell is constructed by discretizing the operations
in each edge. The discretization process is done as follows: for each hidden node j,
we consider the soft-maxed α values of the operations between j and its predecessor
nodes, i.e., exp(α

(i,j)
o )∑

o′∈O exp(α
(i,j)

o′ )
, 0 ≤ i < j. Then, we retain the top-K operations of

each node with the largest values. In the original paper, K is set to 2, but other
discretization strategies may be used, such as retaining K = 3, or all operations,
which is an aspect we study in this work (see section 4.2.3). Once the optimal cell
is found, the final network is constructed by stacking the found cells. Finally, the
derived network is trained from scratch to evaluate its test performance.

3.2 PC-DARTS

Despite the significant improvement in runtime, DARTS still suffers from large
memory requirements, since the intermediate outputs of all operations in each node
have to be stored while training the search architecture. This problem puts a limit
on searching with a large batch size, leading to slower search and instable training.
To address this issue, Xu et al. [2019] proposed an extension of DARTS that samples
a subset of channels and apply operations only on the subset while leaving other
channels intact. Mathematically, the idea is described as follows. Let xi be a latent
video representation of size [H,W, T,C] that undergoes a transformation, where H,
W , T are the height, width and number of frames of the input, respectively, and C is
the number of channels. The computation of the partial channel connection is given
by

o
(i,j)
PC (xi) =

∑
o∈O

exp(α
(i,j)
o )∑

o′∈O exp(α
(i,j)
o′ )

o(S(i,j) ∗ xi) + (1− S(i,j)) ∗ xi, (5)

where S(i,j) denotes the mask that selects the channels to keep. For each mixed
operation, 1/K of the channels are selected at random, where K is a hyperparameter
controlling the proportion of selected channels.
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The main benefits of partial channel sampling in DARTS is twofold. First, the
memory requirement of the computation is reduced to 1/K, since only 1/K of the
channels are passed to the mixed operations. As a result, larger batch sizes can be
used for training with increased speed and stability. Second, partial channel sampling
regularizes the preference of parameter-less operations. An often reported undesired
phenomenon in DARTS is that parameter-less operations, such as skip − connect,
zero, pool, or even operations such as noise that are deliberately designed to harm the
performance, are preferred over operations with parameters such as convolution [Zela
et al., 2018]. This is presumably because parameter-less operations are heavily
preferred at earlier stages of the architecture search, since their outputs are more
stable than those of operations whose parameters are not yet well-trained, to the
point where operations with parameters are not able to catch up even at later stages.
Partial channel sampling mitigates this problem because operations with parameters
produce stabler results as only a small subset of the channels are passed through
under-trained operations while others remain intact.
However, randomly sampling channels may still cause suboptimal operation se-

lection, since the subset of channels with which the parameters are trained change
at every iteration. As a result, the final optimal architecture could vary widely. To
compensate for this randomness, the authors introduce a set of edge normalization
parameters β associated with each edge (i, j). β(i,j) represents the relative strength of
the edge (i, j) in comparison to the other edges that are connected to the same node,
i.e., (i′, j), i′ < j . The computation of the value of a hidden node j is as follows:

xjPC =
∑
i<j

exp(β(i,j))∑
i′<j exp(β(i′,j))

o(i,j)(xi) (6)

β parameters are jointly optimized with α and are shared across iterations, thereby
rendering the final architecture less influenced by random sampling at each iteration.
After the search is finished, the final archictecture is derived based on the operation
strength given by α(i,j)

o · β(i,j).
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4 Approach

In this chapter, we propose our approach, dubbed AutoDeepFuse, to the problem
of video action classification.

Figure 1: The AutoDeepFuse framework. Multi-modal features are first processed
using pre-trained models and then fused via fusion architecture searched
through differentiable architecture search.

4.1 AutoDeepFuse Framework

The AutoDeepFuse pipeline consists of two components: 1) extracting features of
each modality, i.e., RGB, optical flow and pose estimate of the data, using models
pre-trained on Kinetics700, and 2) combining the extracted modality features through
the fusion architecture found via architecture search to create predictions for the
video action recognition task. In this section, we present a detailed overview of
each component. Specifically, we elucidate the input modalities and their respective
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pre-trained models used for our experiments, and explain the components of the
AutoDeepFuse search block in which the architecture search is performed.

4.1.1 Input Modalities

Optical Flow

For successful recognition of actions in videos, good representations of both appearance
and motion information are necessary. While 3D CNNs are in principle able to learn
both representations solely from raw RGB data, researches have shown that explicitly
providing different input modalities that capture appearance and motion information
yields superior performance [Simonyan and Zisserman, 2014]. Accordingly, we use the
optical flow images of each frame extracted from the RGB data for our experiments.

An optical flow encodes the apparent motion of objects through a set of displacement
vectors that describe the movement of pixels between two consecutive frames. Formally,
let u, v be the pixel position of an image along the x and y axis, respectively. Then,
an optical flow image consists of displacement vectors dt(u, v) = [dxt ,d

y
t ] for each

pixel (u, v) between two consecutive frames t and t+ 1, so that the position of the
object at pixel (u, v)t at frame t shifts to the pixel (u, v)t +dt at frame t+ 1. dxt and
dyt are the vertical and horizontal components of the displacement vector. For this
work, we use the method by Zach et al. [2007] to extract the vertical and horizaontal
components of the displacement vectors and stack them to form a 2D image for each
frame.

Pose

Additionally, we use body pose information in the form of human body segmentation
as an input modality. Explicitly providing the pose as well as the location of each
body part of the human actor in a video is beneficial for action recognition in several
ways. First, it allows the model to better detect parts of the image that belong to the
human actor which might be harder to achieve solely from the RGB data. Also, the
location information provides context to the motions that occur in a video, aiding
the model’s ability to distinguish whether a moving part of a video is a body part
or an object. Such information can be especially helpful in videos where the actor
interacts with an object (e.g. in a scene where a person throws a ball).
For this work, we extract the body pose estimate in the form of body parr seg-

mentation for each frame of the videos using the method from [Zolfaghari et al.,
2017], who trained the Fast-Net architecture [Oliveira et al., 2016] for the body part
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segmentation task on the J-HMDB [Jhuang et al., 2013] and the MPII [Andriluka
et al., 2014] datasets and achieved good performance. As in the original paper, we
convert each segmented frame into an RGB image, in which each pixel located at a
specific body part is assigned a pre-defined RGB value.

4.1.2 Pre-trained Models

In searching for a video action recognition architecture, one often uses the modalities
directly as input to the search algorithm, as is done by Peng et al. [2019] and Ryoo
et al. [2019]. Instead, we first perform feature extraction of the input modalities
through the use of pre-trained models. For each input modality, we extract its
features by passing it into its respective pre-trained model whose weights are trained
to classify images in Kinetics700 [Carreira and Zisserman, 2017], a large video action
recognition dataset containing approximately 650,000 video clips and 700 action
classes. Because the pre-trained models are trained for the same task, i.e., human
action recognition, the feature detectors learned in their intermediate layers also
serve as effective detectors for our task. Moreover, since they are trained on a large
dataset with 700 classes, the trained feature detectors are unlikely to overfit but
remain generally applicable to other action recognition tasks. Hence, we expect the
features extracted from the pre-trained models to serve better inputs to our fusion
architecture than the modalities themselves.
For our experiments, we employ a variant of ResNet [He et al., 2016], the state-

of-the-art architecture for image classification, for each input modality. For RGB,
flow and pose inputs, we used (2+1)D ResNet [Tran et al., 2018] of depth 50, 3D
ResNeXt [Xie et al., 2017] of depth 101, and 3D ResNet of depth 18, respectively. We
obtain the network weights of the pre-trained models from the work of Kataoka et al.
[2020] that trained a variety of spatio-temporal CNNs on the RGB and optical flow
data of various datasets. Since the pre-trained model weights for the pose estimate is
not available by Kataoka et al. [2020], we use the weights trained on RGB for our
pose network.
In using pre-trained models for multi-modal fusion, a pivotal design decision is

determining the layer at which to take the intermediate representation. A conventional
spatio-temporal CNN is designed such that the spatial and temporal extent of the
data is gradually reduced by increasing the stride value and/or the kernel size, or
by introducing pooling layers. In principle, it is possible to use the output of any
arbitrary intermediate layer of the pre-trained network to apply further fusion. In
practice, however, the quality of the fusion varies significantly depending on which
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layer the feature is taken from. If we use low-level features, i.e., features with large
spatio-temporal resolution, as the input to our fusion architecture, we would not
take full advantage of the benefits of using a pre-trained network since we only use
its first few layers. On the other hand, taking high-level features from the very last
layer would also be problematic, because the convolution operators in the fusion
architecture require inputs with sufficiently large spatio-temporal resolution in order
to perform effectively. Hence, our goal here is to select the layer of the pre-trained
network that is sufficiently deep while its output resolution is large enough.
As illustrated in figure 2, all of the used pre-trained models contain four layer

blocks that applies a series of convolution followed by max-pooling that reduces the
spatio-temporal resolution by half. In our work, the outputs of the third layer of the
pre-trained networks are used as inputs the fusion architecture, since they provide a
good balance between the resolution size and the layer depth.

Figure 2: Transformation of feature map size [C, T,H,W ] in the pre-trained models,
where C, T , H and W denote respectively the number of channels,
temporal length, height and width of the feature maps.

4.1.3 Fusion Architecture

Using the features extracted from the three modality streams, we proceed to build a
fusion network architecture. The building procedure is as follows: first, we perform
architecture search using PC-DARTS [Xu et al., 2019] in order to derive the optimal
network. Then, we train the resulting architecture from scratch. The components of
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the fusion architecture as well as the details of the search and evaluation procedure
are described below.

Stem Cell

Before performing the fusion, we first feed the features extracted from the pre-trained
models to the stem cell Cstem. To reduce the computational cost, Cstem concatenates
the features and applies 1D convolution followed by batch normalization to reduce
the channel size to 512.

Fuse Cell

Following the experiments in Liu et al. [2018b], we design our search space as a
sequence of stacked cells Ct ∈ {C1, ..., Cn} in which the features are transformed. Each
cell is a directed acyclic graph containing input nodes and four hidden nodes, as
illustrated in figure 3. The input nodes receive outputs of the closest previous cells that
are connected to the current fuse cell and perform ReLU-Conv-BN to set the channel
size to 512. Each hidden node of a cell is connected to all of its predecessor nodes
(including both input and hidden nodes) via edges that represent mixed operation.
During the search phase, each hidden node outputs the element-wise sum of all inputs,
i.e., the outputs of its predecessor nodes transformed via mixed operations. In the
evaluation phase, the cells are first discretized based on the optimized α values and
trained from scratch. Each hidden node receives the outputs of the previous nodes
that are connected to itself and applies the operator selected through the search.
Formally, the output of a node j at the evaluation phase is:

x(j) =
∑
i<j

o(i,j)(x(i)) if ∃(i, j), (7)

where o(i,j) is the operator of the edge (i, j) selected during the search.
The final output of the cell is the channel-wise concatenation of all hidden node

outputs.

Final Prediction

After the fusion, we remove the spatial and temporal resolutions of the last fuse
cell output by downsampling through the global average pooling layer. Afterwards,
the downsampled features are fed to a fully-connected layer to produce the final
prediction.
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Figure 3: Fuse cell with I = 1 (top) and with I = 2 (bottom). During the
search phase (depicted on the left), each hidden node receives outputs of
previous nodes and applies mixed operation (bold colored arrows). After
the discretization (on the right), each node receives outputs of previous
nodes that are connected to itself and applies the operation chosen from
the search. The cell output is the channel-wise concatenation of all hidden
nodes outputs.
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4.2 Architecture Search Design

Having elucidated the components of the AutoDeepFuse pipeline, we proceed to
detail the various architecture design choices that are experimented in this work.
Although differentiable architecture search is aimed at automatically discovering
well-performing architectures for a given task, it is only able to perform architecture
search on the cell level, i.e., operator choices and connectivity of nodes within a cell,
while the macro-level decisions, such as the number of stacked cells to use and their
connectivity pattern, are left to the implementer. Nevertheless, these decisions must
not be overlooked since they are crucial for determining DARTS’ behavior during the
search and evaluation, the overall efficiency of the found architecture as well as its
final performance. Hence, in order to conduct a thorough analysis of our approach,
we run experiments on various settings of the macro-level design decisions.

Figure 4: Hypothetical Loss function with respect to α. The further away the
discrete architecture lies from the searched architecture, the higher the
risk its performance is poor.

In investigating the effect of these decisions, we are primarily concerned with two
aspects of the architecture search. First, we consider the cost-performance trade-
off between the architecture search/evaluation procedure and the found network.
Since the goal of our research is to discover an efficient fusion architecture block that is
built on top of the pre-trained modality streams rather than a stand-alone classification
network, we want to reduce the size of the searched architecture while maintaining
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high performance. Second, we are concerned with reducing the optimization gap
that occur at the discretization step of DARTS. Optimization gap is the discrepancy
that arise when the optimized search architecture, expressed by the continuous α∗,
is transformed to obtain the discrete architecture αdisc that lie somewhere in the
neighborhood of α∗. If a discretization method produces αdisc that heavily distorts α∗,
i.e., the distance between α∗ and αdisc is too large, then the rankings of architecture
candidates deemed by the search architecture would degrade to the point where they
fail to reflect the true performance of the candidates, and as a result, the derived
architecture would run the risk of performance deterioration (illustrated in figure 4).
Hence, appropriate discretization strategy is necessary to avoid this problem. These
considerations are reflected in our experimental design, described below.

4.2.1 Number of Cells

First, we study the relation between the depth of the fusion architecture and its
performance. As is well known, deeper models have higher expressive capacity
and therefore achieve higher performance when solving complex tasks. On the
other hand, shallower models may achieve better generalization error since its lower
expressive capacity inhibits overfitting to the given data. Further, shallow models
are computationally less expensive and are easier to train. Since the aim of our
research is to find a well-performing and efficient modality fusion architecture, we
run experiments with varying numbers of stacked fuse cells C ranging from 1 to 4.

Figure 5: AutoDeepFuse search architecture with different number of fuse cells.
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Our approach to stacking cells to construct the fusion architecture differs from
the works by Xu et al. [2019] and Liu et al. [2018b] in two aspects. First, in the
aforementioned works, the depth of the derived architecture is increased by repeating
the discovered cells multiple times. For example, the architecture search of DARTS
is done by stacking 6 search cells, while the evaluation is done by stacking the found
cells to form a network of 20 cells (CIFAR-10) or 14 cells (ImageNet). However,
arbitrarily increasing the network depth at the discretization step results in a large
distance between α∗ and αdisc, a phenomenon also known as the depth gap between
the search and evaluation [Chen et al., 2020]. In this work, we avoid this problem
by keeping the number of cells in the discretized network equal to that of the search
architecture. Second, in the previous works, the architecture weights α (and the edge
weights β in PC-DARTS) are shared across the same type of cells, i.e., normal and
reduction cells, during the search. However, we believe that in the context of modality
stream fusion, the features may require different types of operation at different level
of layers, and therefore we train α and β of the cells independently, such that each
cell at the end of the search contains different operators and node connections.

4.2.2 Cell connectivity

Further, we study the influence of cell-level connectivity on the performance by
varying the number of a cell’s input connections I from previous cells, as illustrated
in figure 6. I determines the number of inputs a cell receives from its predecessor
cells, i.e.,

out(Ct) = Ct(out(Ct−1), ..., out(Ct−i)) i ∈ {1, ..., I}. (8)

For example, when I = 2, the inputs to C3 are the outputs of C2 and C1, and the
inputs to C4 are the outputs of C3 and C2, and so on. I also determines the total
number of node connections M inside a cell, therefore also the computational cost of
our algorithm. Since the number of hidden nodes in a cell is fixed as 4 throughout
our experiments, a cell contains M = 4(I− 1) + 10 connections (see figure 3). In most
differentiable architecture search applications, I is usually fixed to 2. In this work,
however, we experiment with I ∈ {1, 2, 3}. When I is larger than 1, it is possible that
a cell has less number of predecessor cells than I. In such case, the cell receives the
Cstem output multiple times, as illustrated in figure 6.
The choice of I can be seen as a trade-off between cost and performance. Using
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I = 1 makes the architecture to remain small, since there are less total number of
edges to optimize in the cells. On the other hand, when I = 3, we can expect higher
performance since the expressive capacity of the architecture is higher, and the dense
connections permit information and gradients to propagate more easily.

Figure 6: Fusion architecture with cell input connection I = 1...3 (from left to
right).

4.2.3 Cell Discretization

We also experiment with different methods of discretizing cells for obtaining the
final architecture. One method, as used in Xu et al. [2019], is to derive a cell
by computing for each candidate operator o(i,j) its connection strength given by
α
(i,j)
o · β(i,j) and keeping K = 2 operators with the largest connection strength per

node (see section 3.2). We call this method type top −K discretization. Another
possible approach, which is not explored in previous works, is to retain an operator
from all connections (i, j) inside a cell (we call this method type all discretization).
The two methods are illustrated in figure 7.

The rationale behind the former approach is that only a subset of the optimized
operators contribute mostly to solving the task, and therefore other operators can be
removed to reduce the model size without harming the performance. However, we
hypothesize that this could lead to poor performance, because as far as the problem of
optimization gap is concerned, αdisc obtained through the top−K method introduces
more distortion of α∗ than when the all method is used due to the arbitrary exclusion
of operators trained during the architecture search phase. For example, the mixed
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Figure 7: Fuse cell in the search phase (bottom), discretized cell of type all (top
left) and type top-k (top right). Since I = 2 in the example, i.e., there
are two inputs to the cell, all intermediate nodes retain two connections
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operator of a hidden node might determine a certain candidate operator as the best
choice based on the three inputs it receives during the search. However, it is possible
that the operator is no longer the best choice if it only receives two of the inputs
instead of all three. Then, the resulting network’s performance would deteriorate
because it is no longer a close approximation of α∗. The all discretization method
can mitigate this problem by retaining all optimized edges, at the cost of higher
computational resources.
To validate our hypothesis, we experiment with and compare the effect of both

types of discretization. When the top−K method is used, we set K to be equal to I,
i.e., if a cell has three inputs, then three connections per node are retained.

4.2.4 Candidate Operators

Another architecture search design choice that we consider is the design of the set
of candidate operators. For this work, we experiment with two sets of candidate
operators. The first set, which we dub S1, includes operators conventionally used for
video action recognition tasks: {3×3×3 Conv, 1×1×1 Conv, 3×3×3 SepConv, 3×
3×3 DilConv, 3×3×3 (2+1)D_Conv, SkipConnect, Zero}. All operators maintain
the same feature map size throughout the fusion by applying appropriate amount
of ZeroPadding around the feature maps. Further, the input and output channel
dimensions of all operators are fixed to 512, and all operators except SkipConnect and
Zero are preceded by Rectified Linear Unit layer and followed by batch normalization.
(2 + 1)D_Conv [Tran et al., 2018] is a block of two layers comprising a 2D spatial
convolution and a 1D temporal convolution, and therefore has intermediate feature
maps between the layers. As in the original paper, we set the channel size of the
intermediate feature maps to 1152, such that the overall number of parameters is
equal to the 3D convolution with the same kernel size. The operators in S1 and their
parameter sizes are listed in table 1.
The second set S2 is a modified set containing operators with less number of

parameters that we created after observing DARTS’s strong preference for parameter-
heavy operators. Since our goal is to find an architecture block that efficiently
fuses the already processed modality features, we experiment with S2, in which
operators have less number of parameters, listed in table 2. Its difference to S1 is
that 3× 3× 3 Conv and 3× 3× 3 DilConv are excluded, the intermediate channel
size of (2 + 1)D_Conv is reduced to 512, and Flattened_Conv [Jin et al., 2014] is
included. Similar to (2 + 1)D_Conv, Flattened_Conv consists of a series of three
convolutional filters of size (3 × 1 × 1), (1 × 3 × 1) and (1 × 1 × 3) that convolve
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Name Description #Parameters
3D_Conv1 3D convolution with kernel size 1 0.26M
3D_Conv3 3D convolution with kernel size 3 7.08M

3D_SepConv3 3D depthwise convolution with kernel size 3
followed by 3D convolution with kernel size 1 0.55M

3D_DilConv3 3D convolution with kernel size 3 and dilation 2 7.08M

(2+1)D_Conv3 2D spatial convolution followed by
1D temporal convolution with kernel size 3 7.08M

Skip Skip (identity) connection between nodes none
Zero No connection between nodes none

Table 1: Candidate operators of S1. All operations are preceded by rectified linear
unit (ReLU) and followed by a batch normalization layer.

Name Description #Parameters
3D_Conv1 3D convolution with kernel size 1 0.26M

3D_SepConv3 3D depthwise convolution with kernel size 3
followed by 3D convolution with kernel size 1 0.55M

(2+1)D_Conv3 2D spatial convolution followed by
1D temporal convolution with kernel size 3 3.15M

Flattened_Conv A chain of 3D convolutions with kernel sizes
(3, 1, 1), (1, 3, 1), (1, 1, 3) 2.36M

Skip Skip (identity) connection between nodes none
Zero No connection between nodes none

Table 2: Candidate operators of S2. All operators are preceded by rectified linear
unit (ReLU) and followed by a batch normalization layer.

over each dimension of the 3D data volume. As a result, S2 contains a total of
six operators, of which four are weight-equipped convolutional parameters, and the
average number of operator parameters are reduced by 65%.
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5 Experiments and Results

In this chapter, we provide a detailed explanation of the experimental procedure
of our approach. Further, we address the following research questions: 1) whether
PC-DARTS discovers fusion architectures that achieve superior performance than
the simple feature concatenation strategy, and 2) how the macro-architecture design
settings affect the performance and the model size of the resulting fusion architecture.
We answer these questions through the obtained experimental results and its analysis.

5.1 Dataset

5.1.1 HMDB51

HMDB51 [Kuehne et al., 2011] consists of 51 action classes with a total of 6,766
video clips extracted from a wide range of sources. It is one of the more challenging
datasets because the dataset size is relatively small, it contains lots of actions that
are similar to each other, and the samples are collected from a wide range of sources.
The dataset has three different split settings of training and test samples, where the
training and test set contain 5,100 and 1,666 samples, respectively. Our experiments
are mainly based on HMDB51, and we report our experimental results on the split 1.

5.1.2 UCF101

Further, we conduct several experiments on UCF101 [Soomro et al., 2012], which is
another popular dataset for benchmarking the performance of video action classifica-
tion models. It contains 13,320 video clips of 101 classes collected from various web
sources. Like HMDB51, it has three splits of train/test sets containing 9,537 and
3,783 clips, respectively. We also use split 1 to report the test performance of our
approach.
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5.1.3 Frame sampling

Wang et al. [2016] showed that using all or densely sampled frames of a video clip is
inefficient since information contained in consecutive frames are highly redundant,
and that sparsely sampled frames can maintain the global temporal structure in the
data but are significantly more computationally efficient due to the smaller size of
the data.

Accordingly, we employ a sparse frame sampling scheme for selecting the frames in
video clips to use for the classification task. The sampling procedure is as follows.
First, we rescale the height and width of the video clip V to have the input volume
dimension of [T,C, 112, 112], where T and C are the frame length and the number
of channels (3 for RGB and pose, 2 for optical flow), respectively. Then, we split V
into 64 segments {S1, S2, ..., S64} of equal lengths, such that the dimension of each
segment is [ T64 , C, 112, 112]. Then, for the training set, we randomly sample a frame
from each segment and combine them to form a new clip Vnew that has 64 frames. For
the validation and test set, we randomly select a position in a segment and sample
the frame corresponding to that position from all segments, such that all sampled
frames are equidistant.

Formally, let f(S, i) be a function that outputs the frame corresponding to the i-th
position in the segment S of length T . Then, the new clip after the sampling can be
written as:

Vtrain = concat(f(S1, i1), f(S2, i2), ..., f(S64, i64))

Vval,test = concat(f(S1, p), f(S2, p), ..., f(S64, p))
(9)

where {i1, ..., i64} and p are sampled from a discrete uniform distribution U(1, T ).

This segment-based sampling scheme converts the video data of various durations to
clips of equal lengths, enabling the training of our model. Further, randomly sampling
a frame from each segment for the training set has the effect of data augmentation
since multiple combinations of frames can be generated from a single dataset.

Although rare, it is possible that a video clip contains less frames than the number
of segments. In that case, we repeat the frame sequence from the beginning multiple
times until it has 64 frames such that it can be segmented. Also, if the number of
frames in a clip is not an exact multiple of 64, which is almost always the case, we
truncate the minimal number of frames at the beginning and the end of the clip to
make it an exact multiple of 64. Although this may result in some loss of information,
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in practice it does not hurt the performance since the sequences in the middle of the
video where the action usually occurs is kept.

5.2 Experimental Design

5.2.1 Architecture Settings

As discussed in the approach section 4.2, we form a 4-dimensional search space where
each axis represent the number of cell input connection I ∈ {1, 2, 3}, number of
stacked cells C ∈ {1, 2, 3, 4}, cell discretization method disc ∈ {all, topk}, and the
set of candidate operators S ∈ {S1,S2}, respectively, and perform a grid search
by running each possible configuration of (I, C, disc, S) six times to obtain the best
performance.

5.2.2 Implementation Detail

For each run, we first obtain the architecture by performing PC-DARTS for 50
epochs. We split the training set into two subsets of equal sizes and optimize the
model parameters w on the training loss, and the architecture parameters α on the
validation loss, using the first and the second subsets respectively. The hyperparamter
K controlling the proportion of sampled channels in PC-DARTS is set to 4, i.e., 25% of
the channels are sampled at each node of the cells. For training the search architecture,
we set the batch size to 64 and the initial learning rates of w and α to 2e−3 and 3e−4,
respectively. We use stochastic gradient descent with momentum of 0.9, and cosine
annealing [Loshchilov and Hutter, 2016] without warmstart to gradually decrease
the architecture learning rate to 0, in order to help the search architecture converge
over the epochs. Moreover, to inhibit the parameter-less operators (SkipConnect,
zero) from dominating at earlier stages of the architecture search, we warm up the
architecture search by freezing α and only training w in the first 5 epochs.

During the search, the current snapshot of the architecture and its validation loss
is stored at the end of each epoch. Afterwards, the fusion architecture is derived
by selecting the architecture snapshot with the best validation loss and applying
discretization to it. The resulting network is then trained from scratch for 70 epochs.
At this stage, we resplit the training set randomly into two subsets of ratio 90/10, and
the network is trained on the larger subset while the smaller subset is used to compute
the validation loss at the end of each epoch. Finally, we report the test set performance
of the network snapshot with the best validation loss. The hyperparameters used for
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evaluating the network is the same as those used for searching the network.

5.2.3 Baseline

To measure the improvement made by the fusion architectures, we compare our
experimental results with those of the baseline architectures, illustrated in figure 8.
Our baseline architectures consist of the pre-trained modality streams but does not
fuse the features; instead, it simply concatenates the modality features channel-wise,
applies global average pooling to eliminate the spatio-temporal resolution of the
features, and feed them to the fully connected layer to create the final prediction.
We note that the baseline architectures use the outputs of the fourth layer of the
modality streams instead of the third layer, since it does not contain the fuse cells
and therefore the spatio-temporal resolution of the stream outputs no longer need to
be sufficiently large.
Further, to study the contribution of each stream to the overall performance,

we construct seven versions of the baseline architecture, each containing a possible
combination of one or more streams as follows: [R, F, P, R+F, R+P, F +P, R+

F + P ], where R, F , P denote RGB, flow and pose, respectively.
The training procedure of the baselines is same as that of the fusion architecture:

the weights of the fully connected layer is trained for 70 epochs, and the weights of
the pre-trained models are frozen. For optimization, we use SGD with momentum of
0.9 and use cosine annealing to decrease initial learning rate of 2e− 3 over the epochs,
and add L2 regularization on the parameters with a factor of 3e− 4. The snapshot
of the architecture is stored at the end of each epoch, and the test accuracy of the
snapshot with the best validation error is reported. Each baseline run is repeated six
times to obtain the best result.

5.3 Results

5.3.1 Results on HMDB51

Baseline

Table 3 shows the best results of each of our architecture settings as well as the
seven baseline architectures on HMDB51. The baseline experiments show that while
all three modality streams positively contribute to the increase in performance, the
contribution of the RGB and flow streams are more significant than that of the pose
stream. This is presumably due to the fact the stream used for pose was pre-trained
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Figure 8: the fusion architecture (bottom) and the baseline (top) that uses all three
modality streams. The fusion architecture fuses the outputs of the third
layer of modality streams, while the baseline takes the outputs of the
fourth layer of the streams and applies global average pooling and a fully
connected layer.
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Baseline Top-1 acc. # Param. (M)
R 60.69 46
F 61.35 47
P 24.75 33

R+F 68.87 93
R+P 62.50 79
F+P 62.37 80

R+F+P 68.93 127

Table 3: Test performance of the baseline architectures. The performance increases
when more modalities are fused.

PC-DARTS Random
Architecture Setting # Cells Top-1 acc. # Param. (M) # Cells Top-1 acc. # Param. (M)

S1, all, I = 1 3 73.97 236 2 73.81 228
S1, all, I = 2 3 75.24 274 2 74.81 259
S1, all, I = 3 1 73.91 222 3 74.45 312

S1, top-k, I = 1 2 74.87 115 4 74.91 162
S1, top-k, I = 2 4 75 179 2 74.89 128
S1, top-k, I = 3 2 74.63 178 3 72.47 189
S2, all, I = 1 2 74.45 103 2 74.39 95
S2, all, I = 2 2 75.72 117 3 75.39 124
S2, all, I = 3 2 75.12 124 2 73.78 117

S2, top-k, I = 1 2 75.48 88 3 73.12 103
S2, top-k, I = 2 2 75.24 95 2 74.74 90
S2, top-k, I = 3 2 74.51 109 2 74.67 99

S2, all, I = 2 (BOHB) 2 76.21 117

Table 4: Best test performance of each architecture setting (left) and the randomly
sampled architectures (right).

on RGB. Nevertheless, the results show that combining the pose stream always yields
better performance than when it is excluded. The baseline performances of RGB
+ pose, flow + pose, and RGB + flow + pose are higher than the performances of
RGB, flow, and RGB + flow by 1.81%, 1.02% and 0.06%, respectively. As expected,
the best performance was obtained when all three modalities were fused. The test
accuracy of the all-stream model reached 68.93%.

Search & Random Architectures

Table 4 shows the test performance of the best discovered architecture of each ar-
chitecture setting (S, disc, I). Results show that all fusion architectures searched
via PC-DARTS significantly outperformed the baseline. The architecture setting
(S2, all, I = 2) discovered the best architecture, reaching the highest accuracy
at 75.72%, which is 6.79% higher than the baseline, while the worst setting was
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Figure 9: The best architecture (75.72%) discovered through PC-DARTS Cell 1 and
Cell 2 are illustrated at the top and the bottom of the figure, respectively.
When the hyperparameters are optimized, the accuracy was improved to
76.21%.

(S1, all, I = 3) with the accuracy at 73.91%. The best found architecture is illus-
trated in figure 9. Also, to verify that PC-DARTS performs a proper architecture
search rather than randomly selecting operators, we compare the performance of
the found architectures with the randomly sampled architectures. For each setting,
a random architecture is constructed by randomly sampling operators from the
candidate set and evaluated with the same procedure as the searched architectures.
Results show that the searched architectures generally performed better than the
random architectures. However, for the settings (S1, all, I = 3), (S1, topk, I = 1)

and (S2, topk, I = 3), the random architectures performed slightly better than the
searched architectures, suggesting that effective architectures can be sampled by
chance from the given search space.

We also optimized hyperparameters of the best found architecture via BOHB [Falkner
et al., 2018], and achieved further improvement in performance at 76.21%. The opti-
mized hyperparameters and details of the BOHB run is explained in table 5.

The model size of the discovered architectures varied widely depending on their
architecture settings, but no clear correlation was observed between the model size
and the performance. In fact, all architectures discovered using the reduced operator
set S2 achieved slightly higher accuracy compared to their S1 counterparts with only
about 50% of the model size. The two best models found using S2, that achieved
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Hyperparameter Type Range/Choice Log scale
batch size categorical [4, 8, 16, 32]

learning rate float [1e-5, 1e-2] yes
optimizer categorical [Adam, Adamw, SGD]
L2 factor float [1e-5, 2e-2] yes

Table 5: BOHB hyperparameter search space. BOHB was run for 10 iterations with
the mininum and maximum budgets of 2 and 70 epochs, respectively, and
η = 3

the accuracy of 75.72% and 75.48% respectively, contained 10 million and 29 million
parameters less than the baseline, while the two best architectures discovered using
S1 contained 157 million and 62 million parameters more but performed worse than
those found using S2. Moreover, regarding the number of stacked cells C and cell
connectivity I, we detected a tendency of performance decrease when more parameters
were used. In general, an architecture achieved high performance when C = 2 and
I = 2, where the model size was neither too small to cause underfitting nor too large
that it is either too hard to train or over-fits to the data.

Our experiments clearly suggest that, while PC-DARTS is able to discover efficient
and well-performing modality fusion architectures, the macro-level architecture design
choices are pivotal for fully leveraging the power of PC-DARTS. Therefore, we further
analyze the effect of each design choices on the performance in the sections below.

Effect of Cell Stacking

First, we analyze the effect of cell stacking on the resulting performance. According to
table 4, the architecture search generally discovers the best fusion networks when two
cells are stacked. Out of 12 architecture settings, 8 of them produced the best result
when C = 2. In particular, stacking two cells always performed best when the small
candidate operator set S2 is used. We also observe this tendency when the results
of each C are averaged. Figure 10 illustrates the effect of the number of stacked
fuse cells, for each candidate operator set used, on the resulting test accuracy, where
each box represents the performance distribution of each C across all other settings.
We observe that the average accuracy is the highest when two cells were stacked,
while the accuracy gradually decreases when more cells are stacked to build deeper
architectures. On the other hand, stacking only one cell to build shallow networks
resulted in under-fitting to the data. This phenomenon was especially prominent
when S2 was used. The results indicate that simply stacking more cells does not
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necessarily result in a better network.

Figure 10: Effect of number of stacked cells on test accuracy with S1 (left) and S2
(right). In both cases, C = 2 yields the best average performance, and
the performance gradually decreases as more cells are stacked.

Effect of Candidate Operator Set

Next, we analyze the effect of candidate operators set used for the architecture search.
Results indicate that PC-DARTS tends to either select operators with the most number
of parameters in the operator set, or SkipConnect. As illustrated in figure 11, in S1,
3× 3× 3 Conv, 3× 3× 3 DilConv and SkipConnect are the most selected operators,
while other operators are hardly chosen. Similarly, in S2, (2 + 1)D_Conv and
SkipConnect are the most frequent operators. The phenomenon of parameter-less
operators such as SkipConnect dominating the optimized architecture is a well-known
problem, and the results show that a similar tendency, although not as extreme,
exists in our experiments. On the other hand, while the fact that operators with
larger parameter size is preferred may suggest that they are the best choices for the
fusion task, the performance of the derived architectures do not necessarily correlate
with the ratio of these operators. When S1 is used, PC-DARTS hardly selected
(2 + 1)D_Conv, suggesting that it is a suboptimal operator for our task, However,
when S2 is used, (2 + 1)D_Conv is heavily preferred over other parameters, and
the discovered architectures with a high ratio of (2 + 1)D_Conv tended to perform
better than the architectures found using S1. This finding indicates that operators
deemed optimal by DARTS in the search phase are not always the best operators in
the discretized architecture, and therefore a careful design of the operator set by the
DARTS implementer is still neccesary to obtain good performance.
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Figure 11: Bar charts of the probability PC-DARTS selecting each operator. Both
candidate operator sets S1 and S2 are shown.

Effect of Cell Connectivity

Figure 12 illustrates the performance of each combination of (I, disc) averaged across
all experiments. As shown in the figure, PC-DARTS discovers better architectures
when I = 2 is used. Because I controls the size of the architecture, we observe a
phenomenon similar to that we see in the analysis of C. When I = 1, the size of the
discovered architectures contain relatively few parameters. Therefore, although they
are more efficient in terms of computational resources, their performance is worse
than when I = 2. On the contrary, when I = 3, the networks are large and the
connections between the cells are dense, thus they are harder to train.

Effect of Discretization Method

Regarding the discretization method, although the all method performs slighlty
better than the topk method, we do not observe a significant performance difference.
However, since the topk method prunes a large proportion of the node connections,
the overall number of parameters retained in architectures derived using the topk are
significantly less than those obtained using the all method. Hence, results suggest
that, to find an efficient fusion network, discretizing the search architecture using the
topk method is a reasonable choice without much loss in performance.
However, we also observe that the variance of the run results obtained with topk
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Figure 12: Effect of cell connectivity on the test accuracy with all (left) and topk
(right). I = 2 produces the best result in both cases.

methods are higher than the results of the all method, as illustrated in figure 13. As
we have hypothesized, it is likely that arbitrarily pruning optimized connections inside
the cells introduced a larger optimization gap, rendering the search architecture’s
performance estimate of the derived architecture less accurate. The results indicate
that, although the performance variance caused by this gap is not as extreme in
our experiments, this phenomenon may be more troublesome in other application of
DARTS, and therefore the search space design must be meticulously done in order to
avoid suboptimal performance.

5.3.2 Transfer to UCF101

We also applied transfer learning by evaluating the networks discovered with HMDB51
on UCF101. Table 6 shows the transfer learning results on UCF101 as well as the
baseline performance. Results show that the networks found with HMDB51 also
achieve good performance when transferred to the larger dataset. All of the networks
yielded higher performance on UCF101 than the best baseline architecture that
achieves the accuracy of 92.78%.

5.3.3 Comparison with Other Approaches

Table 7 shows the performance of our and other approaches on HMDB51 and UCF101.
Comparing with other NAS methods, AutoDeepFuse does not perform better than
EvaNet [Piergiovanni et al., 2019] (on HMDB51). However, we believe that the
runtime of our architecture search method is orders of magnitude faster than that of
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Figure 13: Swarm plot of experimental results obtained via each discretization
method. V ar(Xall) = 1.25, V ar(Xtopk) = 1.69.

EvaNet. Although EvaNet’s search runtime is not explicitly stated in their paper, their
method adopts an evolutionary strategy in which thousands of candidate architectures
are completely evaluated. On the other hand, our method requires merely 2 GPU
days for the complete search and evaluation.
Our optimal fusion network, when transferred to UCF101, performs significantly

better (on UCF101) than the simple DARTS approach [Peng et al., 2019] that directly
uses the raw RGB data of UCF101 for the search. The runtime of their architecture
search (excluding evaluation) is 25 GPU hours, showing that our method improves
the accuracy by more than 35% with only slight increase in the runtime.

Comparing with the manual approaches, AutoDeepFuse outperforms the two-stream
networks with simple fusion schemes, but does not outperform the state-of-the-art
architectures such as I3D and MARS. This is presumably due to the fact that, while
all of these methods fine-tune their architectures after pre-training, we do not fine-tune
the parameters of the pre-trained models, which take up most of the parameters in the
architecture. Therefore, the final performance of our model is bound by the original
performance of the used pre-trained models. However, since our experiments suggest
that the network is able to significantly increase the performance of the pre-trained
models via effective fusion, we believe that our approach has a potential to yield
superior performance when state-of-the-art pre-trained backbones are used.
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UCF101 Transfer Learning
Architecture Setting # Cells Top-1 acc. # param. (M)

S1, all, I = 1 3 94.06 236
S1, all, I = 2 3 94.35 274
S1, all, I = 3 1 94.31 222

S1, top-k, I = 1 2 93.56 115
S1, top-k, I = 2 4 93.77 179
S1, top-k, I = 3 2 94.14 178
S2, all, I = 1 2 93.76 103
S2, all, I = 2 2 94.22 117
S2, all, I = 3 2 94.13 124

S2, top-k, I = 1 2 93.59 88
S2, top-k, I = 2 2 94.02 95
S2, top-k, I = 3 2 93.95 109

Baseline
R 89.92 46
F 85.61 47
P 32.65 33

R+F 92.30 93
R+P 90.51 79
F+P 86.71 80

R+F+P 92.78 127

Table 6: UCF101 test accuracy of best architectures found with HMDB51 and
baseline architectures.
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Method HMDB51 UCF101
Manual
Two-Stream [Simonyan and Zisserman, 2014] 59.4 88.0
Two-Stream Fusion [Feichtenhofer et al., 2016] 65.4 92.5
C3D [Tran et al., 2015] 85.2
R(2+1)D [Tran et al., 2018] 74.5
I3D [Carreira and Zisserman, 2017] 80.1 97.8
MARS [Crasto et al., 2019] 80.9 95.8
NAS
EvaNet [Piergiovanni et al., 2019] 82.3
DARTS [Peng et al., 2019] 58.6
AutoDeepFuse 75.72 94.35
AutoDeepFuse (BOHB) 76.2

Table 7: Comparison of top-1 test accuracy (in percentage) with other approaches.
EvaNet performs better (on HMDB51) than our approach, but at the cost
of runtime orders of magnitude larger than AutoDeepFuse, since it requires
complete evaluation of thousands of candidate architectures. On the other
hand, AutoDeepFuse performs significantly better (on UCF101) than the
simple DARTS approach with the increase in the runtime of less than one
GPU day.
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6 Conclusion

In this paper, we presented a novel approach to the task of video action recognition
via multi-modal stream fusion, in which we employed a 3D spatio-temporal CNN to
efficiently fuse the features of the RGB, optical flow, and pose estimate of the data
extracted from the pre-trained modality streams. Instead of manually designing the
fusion scheme, we automatically discovered optimal fusion networks via PC-DARTS,
an efficient neural architecture search method, and showed that the found networks
are able to increase the performance of the pre-trained streams through effective
fusion of the modality features.

Moreover, we showed that while DARTS is able to find well-performing architectures,
their quality is also subject to the macro-level design decisions left to the implementer.
Through a set of systematic experiments, we found that these design choices have a
heavy impact the performance and the size of the discovered architectures. Specifically,
our experiments indicated that, when a large search space is given, DARTS tends
to find networks with a large model size, but the network, when discretized, are not
necessarily optimal. Rather, we observed a tendency of smaller (but not too small to
cause under-fitting) networks to perform better. Also, our finding supports the belief
that discretization methods that heavily distorts the search architecture may fail to
adequately reflect the true performance of the derived architecture and can lead to
higher variance in evaluation.

For further improving the performance of our approach, future research directions
include experimentation with additional input modalities, such as object segmentation,
with different pre-trained modality streams, and with other types of 3D spatio-
temporal operators.
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